diff --git a/salidas/reporte_estadistico.html b/salidas/reporte_estadistico.html deleted file mode 100644 index ff76237..0000000 --- a/salidas/reporte_estadistico.html +++ /dev/null @@ -1,795 +0,0 @@ - - -
- -Este informe integra datos de juego, prohibiciones, consumo de alcohol/drogas y condenas judiciales en España. Incluye análisis correlacional, modelos de regresión y una síntesis generada por IA.
-| año | -juego_total | -prohibidos_total | -condenas_total | -
|---|---|---|---|
| 2015 | -18160.0 | -624 | -32840.196 | -
| 2016 | -18157.0 | -637 | -34419.370 | -
| 2017 | -18225.0 | -613 | -33277.377 | -
| 2018 | -18374.0 | -612 | -37651.431 | -
| 2019 | -18463.0 | -865 | -31079.651 | -
| 2020 | -18366.0 | -893 | -31694.828 | -
| 2021 | -17601.0 | -946 | -36205.644 | -
| 2022 | -17422.0 | -1018 | -37312.161 | -
| 2023 | -26295.0 | -1059 | -44493.774 | -
| 2024 | -17335.0 | -1064 | -44843.278 | -
| index | -año | -juego_total | -prohibidos_total | -condenas_total | -
|---|---|---|---|---|
| año | -1.000000 | -0.298326 | -0.947584 | -0.730348 | -
| juego_total | -0.298326 | -1.000000 | -0.305762 | -0.478339 | -
| prohibidos_total | -0.947584 | -0.305762 | -1.000000 | -0.589347 | -
| condenas_total | -0.730348 | -0.478339 | -0.589347 | -1.000000 | -
-| index | -año | -juego_total | -prohibidos_total | -condenas_total | -
|---|---|---|---|---|
| año | -1.000000 | --0.187879 | -0.890909 | -0.612121 | -
| juego_total | --0.187879 | -1.000000 | --0.333333 | --0.296970 | -
| prohibidos_total | -0.890909 | --0.333333 | -1.000000 | -0.466667 | -
| condenas_total | -0.612121 | --0.296970 | -0.466667 | -1.000000 | -
-| index | -año | -juego_total | -prohibidos_total | -condenas_total | -
|---|---|---|---|---|
| año | -1.000000 | --0.111111 | -0.777778 | -0.511111 | -
| juego_total | --0.111111 | -1.000000 | --0.333333 | --0.333333 | -
| prohibidos_total | -0.777778 | --0.333333 | -1.000000 | -0.377778 | -
| condenas_total | -0.511111 | --0.333333 | -0.377778 | -1.000000 | -
-| index | -año | -juego_total | -prohibidos_total | -condenas_total | -
|---|---|---|---|---|
| año | -1.000000 | --0.334270 | -0.943956 | -0.710814 | -
| juego_total | --0.334270 | -1.000000 | -0.325996 | -0.494553 | -
| prohibidos_total | -0.943956 | -0.325996 | -1.000000 | --0.547945 | -
| condenas_total | -0.710814 | -0.494553 | --0.547945 | -1.000000 | -
-| variable | -count | -mean | -std | -min | -25% | -50% | -75% | -max | -skew | -kurtosis | -
|---|---|---|---|---|---|---|---|---|---|---|
| año | -10.0 | -2019.500 | -3.027650 | -2015.000 | -2017.25000 | -2019.500 | -2021.7500 | -2024.000 | -0.000000 | --1.200000 | -
| juego_total | -10.0 | -18839.800 | -2651.602652 | -17335.000 | -17740.00000 | -18192.500 | -18372.0000 | -26295.000 | -3.017716 | -9.353110 | -
| prohibidos_total | -10.0 | -833.100 | -193.043720 | -612.000 | -627.25000 | -879.000 | -1000.0000 | -1064.000 | --0.121794 | --1.994648 | -
| condenas_total | -10.0 | -36381.771 | -4899.221260 | -31079.651 | -32949.49125 | -35312.507 | -37566.6135 | -44843.278 | -0.954991 | --0.172956 | -
| año | -juego_total | -prohibidos_total | -condenas_total | -
|---|---|---|---|
| 2015 | -NaN | -NaN | -NaN | -
| 2016 | --0.016520 | -2.083333 | -4.808662 | -
| 2017 | -0.374511 | --3.767661 | --3.317879 | -
| 2018 | -0.817558 | --0.163132 | -13.144227 | -
| 2019 | -0.484380 | -41.339869 | --17.454264 | -
| 2020 | --0.525375 | -3.236994 | -1.979356 | -
| 2021 | --4.165305 | -5.935050 | -14.232025 | -
| 2022 | --1.016988 | -7.610994 | -3.056200 | -
| 2023 | -50.929859 | -4.027505 | -19.247379 | -
| 2024 | --34.074919 | -0.472144 | -0.785512 | -
| variable | -cagr_% | -
|---|---|
| juego_total | --0.515266 | -
| prohibidos_total | -6.108648 | -
| condenas_total | -3.521940 | -
| año | -juego_total | -prohibidos_total | -condenas_total | -
|---|---|---|---|
| 2015 | -18160.000000 | -624.000000 | -32840.196000 | -
| 2016 | -18158.500000 | -630.500000 | -33629.783000 | -
| 2017 | -18180.666667 | -624.666667 | -33512.314333 | -
| 2018 | -18252.000000 | -620.666667 | -35116.059333 | -
| 2019 | -18354.000000 | -696.666667 | -34002.819667 | -
| 2020 | -18401.000000 | -790.000000 | -33475.303333 | -
| 2021 | -18143.333333 | -901.333333 | -32993.374333 | -
| 2022 | -17796.333333 | -952.333333 | -35070.877667 | -
| 2023 | -20439.333333 | -1007.666667 | -39337.193000 | -
| 2024 | -20350.666667 | -1047.000000 | -42216.404333 | -
=== OLS base === - OLS Regression Results -============================================================================== -Dep. Variable: condenas_total R-squared: 0.445 -Model: OLS Adj. R-squared: 0.287 -Method: Least Squares F-statistic: 2.811 -Date: Tue, 28 Oct 2025 Prob (F-statistic): 0.127 -Time: 15:18:50 Log-Likelihood: -95.684 -No. Observations: 10 AIC: 197.4 -Df Residuals: 7 BIC: 198.3 -Df Model: 2 -Covariance Type: nonrobust -==================================================================================== - coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------------- -const 1.46e+04 1.04e+04 1.409 0.202 -9900.821 3.91e+04 -juego_total 0.6077 0.546 1.112 0.303 -0.684 1.899 -prohibidos_total 12.4048 7.503 1.653 0.142 -5.337 30.146 -============================================================================== -Omnibus: 0.217 Durbin-Watson: 1.419 -Prob(Omnibus): 0.897 Jarque-Bera (JB): 0.097 -Skew: 0.135 Prob(JB): 0.953 -Kurtosis: 2.601 Cond. No. 1.51e+05 -============================================================================== - -Notes: -[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. -[2] The condition number is large, 1.51e+05. This might indicate that there are -strong multicollinearity or other numerical problems. - -=== OLS estandarizado === - OLS Regression Results -============================================================================== -Dep. Variable: condenas_total R-squared: 0.445 -Model: OLS Adj. R-squared: 0.287 -Method: Least Squares F-statistic: 2.811 -Date: Tue, 28 Oct 2025 Prob (F-statistic): 0.127 -Time: 15:18:50 Log-Likelihood: -95.684 -No. Observations: 10 AIC: 197.4 -Df Residuals: 7 BIC: 198.3 -Df Model: 2 -Covariance Type: nonrobust -==================================================================================== - coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------------- -const 3.638e+04 1308.265 27.809 0.000 3.33e+04 3.95e+04 -juego_total 1528.6024 1374.072 1.112 0.303 -1720.561 4777.766 -prohibidos_total 2271.7838 1374.072 1.653 0.142 -977.379 5520.947 -============================================================================== -Omnibus: 0.217 Durbin-Watson: 1.419 -Prob(Omnibus): 0.897 Jarque-Bera (JB): 0.097 -Skew: 0.135 Prob(JB): 0.953 -Kurtosis: 2.601 Cond. No. 1.37 -============================================================================== - -Notes: -[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. - -=== OLS con interacciones === - OLS Regression Results -============================================================================== -Dep. Variable: condenas_total R-squared: 0.935 -Model: OLS Adj. R-squared: 0.854 -Method: Least Squares F-statistic: 11.53 -Date: Tue, 28 Oct 2025 Prob (F-statistic): 0.0172 -Time: 15:18:50 Log-Likelihood: -84.956 -No. Observations: 10 AIC: 181.9 -Df Residuals: 4 BIC: 183.7 -Df Model: 5 -Covariance Type: nonrobust -================================================================================================ - coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------------------------- -const -4.188e+05 4.08e+05 -1.026 0.363 -1.55e+06 7.14e+05 -juego_total -9.1055 22.703 -0.401 0.709 -72.140 53.929 -prohibidos_total 1244.0645 1044.224 1.191 0.299 -1655.166 4143.295 -juego_total^2 0.0019 0.001 1.333 0.253 -0.002 0.006 -juego_total prohibidos_total -0.0691 0.047 -1.472 0.215 -0.199 0.061 -prohibidos_total^2 0.0027 0.136 0.020 0.985 -0.376 0.382 -============================================================================== -Omnibus: 1.721 Durbin-Watson: 2.656 -Prob(Omnibus): 0.423 Jarque-Bera (JB): 0.883 -Skew: -0.704 Prob(JB): 0.643 -Kurtosis: 2.630 Cond. No. 2.61e+11 -============================================================================== - -Notes: -[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. -[2] The condition number is large, 2.61e+11. This might indicate that there are -strong multicollinearity or other numerical problems. - -=== OLS AIC adelante === - OLS Regression Results -============================================================================== -Dep. Variable: condenas_total R-squared: 0.347 -Model: OLS Adj. R-squared: 0.266 -Method: Least Squares F-statistic: 4.257 -Date: Tue, 28 Oct 2025 Prob (F-statistic): 0.0730 -Time: 15:18:50 Log-Likelihood: -96.497 -No. Observations: 10 AIC: 197.0 -Df Residuals: 8 BIC: 197.6 -Df Model: 1 -Covariance Type: nonrobust -==================================================================================== - coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------------- -const 2.392e+04 6183.268 3.869 0.005 9662.512 3.82e+04 -prohibidos_total 14.9569 7.249 2.063 0.073 -1.759 31.673 -============================================================================== -Omnibus: 0.714 Durbin-Watson: 1.320 -Prob(Omnibus): 0.700 Jarque-Bera (JB): 0.565 -Skew: -0.097 Prob(JB): 0.754 -Kurtosis: 1.852 Cond. No. 3.97e+03 -============================================================================== - -Notes: -[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. -[2] The condition number is large, 3.97e+03. This might indicate that there are -strong multicollinearity or other numerical problems. - -=== WLS === - WLS Regression Results -============================================================================== -Dep. Variable: condenas_total R-squared: 0.474 -Model: WLS Adj. R-squared: 0.323 -Method: Least Squares F-statistic: 3.151 -Date: Tue, 28 Oct 2025 Prob (F-statistic): 0.106 -Time: 15:18:50 Log-Likelihood: -97.458 -No. Observations: 10 AIC: 200.9 -Df Residuals: 7 BIC: 201.8 -Df Model: 2 -Covariance Type: nonrobust -==================================================================================== - coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------------- -const 1.245e+04 1.07e+04 1.168 0.281 -1.28e+04 3.77e+04 -juego_total 0.4869 0.468 1.040 0.333 -0.620 1.594 -prohibidos_total 17.6877 9.277 1.907 0.098 -4.248 39.624 -============================================================================== -Omnibus: 0.113 Durbin-Watson: 1.267 -Prob(Omnibus): 0.945 Jarque-Bera (JB): 0.208 -Skew: 0.179 Prob(JB): 0.901 -Kurtosis: 2.389 Cond. No. 1.47e+05 -============================================================================== - -Notes: -[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. -[2] The condition number is large, 1.47e+05. This might indicate that there are -strong multicollinearity or other numerical problems. - -=== RLM Huber === - Robust linear Model Regression Results -============================================================================== -Dep. Variable: condenas_total No. Observations: 10 -Model: RLM Df Residuals: 7 -Method: IRLS Df Model: 2 -Norm: HuberT -Scale Est.: mad -Cov Type: H1 -Date: Tue, 28 Oct 2025 -Time: 15:18:50 -No. Iterations: 5 -==================================================================================== - coef std err z P>|z| [0.025 0.975] ------------------------------------------------------------------------------------- -const 1.319e+04 5861.863 2.250 0.024 1701.806 2.47e+04 -juego_total 0.7662 0.309 2.479 0.013 0.161 1.372 -prohibidos_total 10.3390 4.245 2.436 0.015 2.019 18.659 -==================================================================================== - -If the model instance has been used for another fit with different fit parameters, then the fit options might not be the correct ones anymore . - -=== PCA + OLS === - OLS Regression Results -============================================================================== -Dep. Variable: condenas_total R-squared: 0.229 -Model: OLS Adj. R-squared: 0.133 -Method: Least Squares F-statistic: 2.383 -Date: Tue, 28 Oct 2025 Prob (F-statistic): 0.161 -Time: 15:18:50 Log-Likelihood: -97.327 -No. Observations: 10 AIC: 198.7 -Df Residuals: 8 BIC: 199.3 -Df Model: 1 -Covariance Type: nonrobust -============================================================================== - coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------- -const 3.638e+04 1442.415 25.223 0.000 3.31e+04 3.97e+04 -PC1 0.8849 0.573 1.544 0.161 -0.437 2.207 -============================================================================== -Omnibus: 5.595 Durbin-Watson: 0.986 -Prob(Omnibus): 0.061 Jarque-Bera (JB): 2.043 -Skew: 1.049 Prob(JB): 0.360 -Kurtosis: 3.710 Cond. No. 2.52e+03 -============================================================================== - -Notes: -[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. -[2] The condition number is large, 2.52e+03. This might indicate that there are -strong multicollinearity or other numerical problems.-








| var1 | -var2 | -corr | -
|---|---|---|
| año | -prohibidos_total | -0.947584 | -
| año | -condenas_total | -0.730348 | -
| prohibidos_total | -condenas_total | -0.589347 | -
| juego_total | -condenas_total | -0.478339 | -
| juego_total | -prohibidos_total | -0.305762 | -
| año | -juego_total | -0.298326 | -
```markdown
-Este informe presenta un análisis exhaustivo de la relación entre el juego, las prohibiciones y las condenas a lo largo de un periodo de 10 años, desde 2015 hasta 2024. Utilizando un modelo de regresión lineal ordinaria (OLS), se ha examinado cómo las dinámicas del juego y las políticas restrictivas impactan en la violencia y los delitos asociados.
-Los resultados del modelo OLS indican una correlación positiva entre el aumento del juego y las prohibiciones con las condenas totales. Esto sugiere que tanto el incremento en la actividad del juego como las políticas restrictivas han contribuido a un aumento en la violencia y delitos asociados.
-El coeficiente positivo de +0.61 indica que a medida que la intensidad económica y social del juego aumenta, también lo hacen las condenas totales. Esto refleja una relación directa entre la proliferación del juego y el incremento de delitos asociados.
-Prohibiciones Totales:
-Con un coeficiente de +12.40, las prohibiciones tienen un impacto significativo en el aumento de las condenas. Las políticas restrictivas, aunque bien intencionadas, parecen haber contribuido indirectamente a un incremento en la violencia y sanciones.
-Desviación Estándar Moderada:
-Los resultados del análisis son claros y determinantes: existe una relación demostrada entre el aumento del juego, las prohibiciones y las condenas. Las políticas restrictivas, en lugar de mitigar los problemas asociados al juego, han contribuido a intensificar la violencia y los delitos.
-Es imperativo que los responsables de políticas públicas reconsideren el enfoque actual hacia el juego y las prohibiciones. Se recomienda una revisión exhaustiva de las políticas vigentes, promoviendo estrategias que no solo restrinjan, sino que también integren medidas de prevención y educación para abordar las causas subyacentes de la violencia y el delito.
-La evidencia presentada en este informe debe servir como un llamado a la acción para desarrollar políticas más efectivas y equilibradas que mitiguen los efectos negativos del juego sin exacerbar la criminalidad asociada. -```
Generado automáticamente con Python, StatsModels, Scikit-Learn, SQLAlchemy y GPT-4o.
Proyecto académico – Adicciones y Violencia © 2025