diff --git a/Estadistica-3/salidas/reporte_estadistico.html b/Estadistica-3/salidas/reporte_estadistico.html new file mode 100644 index 0000000..ff76237 --- /dev/null +++ b/Estadistica-3/salidas/reporte_estadistico.html @@ -0,0 +1,795 @@ + + +
+ +Este informe integra datos de juego, prohibiciones, consumo de alcohol/drogas y condenas judiciales en España. Incluye análisis correlacional, modelos de regresión y una síntesis generada por IA.
+| año | +juego_total | +prohibidos_total | +condenas_total | +
|---|---|---|---|
| 2015 | +18160.0 | +624 | +32840.196 | +
| 2016 | +18157.0 | +637 | +34419.370 | +
| 2017 | +18225.0 | +613 | +33277.377 | +
| 2018 | +18374.0 | +612 | +37651.431 | +
| 2019 | +18463.0 | +865 | +31079.651 | +
| 2020 | +18366.0 | +893 | +31694.828 | +
| 2021 | +17601.0 | +946 | +36205.644 | +
| 2022 | +17422.0 | +1018 | +37312.161 | +
| 2023 | +26295.0 | +1059 | +44493.774 | +
| 2024 | +17335.0 | +1064 | +44843.278 | +
| index | +año | +juego_total | +prohibidos_total | +condenas_total | +
|---|---|---|---|---|
| año | +1.000000 | +0.298326 | +0.947584 | +0.730348 | +
| juego_total | +0.298326 | +1.000000 | +0.305762 | +0.478339 | +
| prohibidos_total | +0.947584 | +0.305762 | +1.000000 | +0.589347 | +
| condenas_total | +0.730348 | +0.478339 | +0.589347 | +1.000000 | +
+| index | +año | +juego_total | +prohibidos_total | +condenas_total | +
|---|---|---|---|---|
| año | +1.000000 | +-0.187879 | +0.890909 | +0.612121 | +
| juego_total | +-0.187879 | +1.000000 | +-0.333333 | +-0.296970 | +
| prohibidos_total | +0.890909 | +-0.333333 | +1.000000 | +0.466667 | +
| condenas_total | +0.612121 | +-0.296970 | +0.466667 | +1.000000 | +
+| index | +año | +juego_total | +prohibidos_total | +condenas_total | +
|---|---|---|---|---|
| año | +1.000000 | +-0.111111 | +0.777778 | +0.511111 | +
| juego_total | +-0.111111 | +1.000000 | +-0.333333 | +-0.333333 | +
| prohibidos_total | +0.777778 | +-0.333333 | +1.000000 | +0.377778 | +
| condenas_total | +0.511111 | +-0.333333 | +0.377778 | +1.000000 | +
+| index | +año | +juego_total | +prohibidos_total | +condenas_total | +
|---|---|---|---|---|
| año | +1.000000 | +-0.334270 | +0.943956 | +0.710814 | +
| juego_total | +-0.334270 | +1.000000 | +0.325996 | +0.494553 | +
| prohibidos_total | +0.943956 | +0.325996 | +1.000000 | +-0.547945 | +
| condenas_total | +0.710814 | +0.494553 | +-0.547945 | +1.000000 | +
+| variable | +count | +mean | +std | +min | +25% | +50% | +75% | +max | +skew | +kurtosis | +
|---|---|---|---|---|---|---|---|---|---|---|
| año | +10.0 | +2019.500 | +3.027650 | +2015.000 | +2017.25000 | +2019.500 | +2021.7500 | +2024.000 | +0.000000 | +-1.200000 | +
| juego_total | +10.0 | +18839.800 | +2651.602652 | +17335.000 | +17740.00000 | +18192.500 | +18372.0000 | +26295.000 | +3.017716 | +9.353110 | +
| prohibidos_total | +10.0 | +833.100 | +193.043720 | +612.000 | +627.25000 | +879.000 | +1000.0000 | +1064.000 | +-0.121794 | +-1.994648 | +
| condenas_total | +10.0 | +36381.771 | +4899.221260 | +31079.651 | +32949.49125 | +35312.507 | +37566.6135 | +44843.278 | +0.954991 | +-0.172956 | +
| año | +juego_total | +prohibidos_total | +condenas_total | +
|---|---|---|---|
| 2015 | +NaN | +NaN | +NaN | +
| 2016 | +-0.016520 | +2.083333 | +4.808662 | +
| 2017 | +0.374511 | +-3.767661 | +-3.317879 | +
| 2018 | +0.817558 | +-0.163132 | +13.144227 | +
| 2019 | +0.484380 | +41.339869 | +-17.454264 | +
| 2020 | +-0.525375 | +3.236994 | +1.979356 | +
| 2021 | +-4.165305 | +5.935050 | +14.232025 | +
| 2022 | +-1.016988 | +7.610994 | +3.056200 | +
| 2023 | +50.929859 | +4.027505 | +19.247379 | +
| 2024 | +-34.074919 | +0.472144 | +0.785512 | +
| variable | +cagr_% | +
|---|---|
| juego_total | +-0.515266 | +
| prohibidos_total | +6.108648 | +
| condenas_total | +3.521940 | +
| año | +juego_total | +prohibidos_total | +condenas_total | +
|---|---|---|---|
| 2015 | +18160.000000 | +624.000000 | +32840.196000 | +
| 2016 | +18158.500000 | +630.500000 | +33629.783000 | +
| 2017 | +18180.666667 | +624.666667 | +33512.314333 | +
| 2018 | +18252.000000 | +620.666667 | +35116.059333 | +
| 2019 | +18354.000000 | +696.666667 | +34002.819667 | +
| 2020 | +18401.000000 | +790.000000 | +33475.303333 | +
| 2021 | +18143.333333 | +901.333333 | +32993.374333 | +
| 2022 | +17796.333333 | +952.333333 | +35070.877667 | +
| 2023 | +20439.333333 | +1007.666667 | +39337.193000 | +
| 2024 | +20350.666667 | +1047.000000 | +42216.404333 | +
=== OLS base === + OLS Regression Results +============================================================================== +Dep. Variable: condenas_total R-squared: 0.445 +Model: OLS Adj. R-squared: 0.287 +Method: Least Squares F-statistic: 2.811 +Date: Tue, 28 Oct 2025 Prob (F-statistic): 0.127 +Time: 15:18:50 Log-Likelihood: -95.684 +No. Observations: 10 AIC: 197.4 +Df Residuals: 7 BIC: 198.3 +Df Model: 2 +Covariance Type: nonrobust +==================================================================================== + coef std err t P>|t| [0.025 0.975] +------------------------------------------------------------------------------------ +const 1.46e+04 1.04e+04 1.409 0.202 -9900.821 3.91e+04 +juego_total 0.6077 0.546 1.112 0.303 -0.684 1.899 +prohibidos_total 12.4048 7.503 1.653 0.142 -5.337 30.146 +============================================================================== +Omnibus: 0.217 Durbin-Watson: 1.419 +Prob(Omnibus): 0.897 Jarque-Bera (JB): 0.097 +Skew: 0.135 Prob(JB): 0.953 +Kurtosis: 2.601 Cond. No. 1.51e+05 +============================================================================== + +Notes: +[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. +[2] The condition number is large, 1.51e+05. This might indicate that there are +strong multicollinearity or other numerical problems. + +=== OLS estandarizado === + OLS Regression Results +============================================================================== +Dep. Variable: condenas_total R-squared: 0.445 +Model: OLS Adj. R-squared: 0.287 +Method: Least Squares F-statistic: 2.811 +Date: Tue, 28 Oct 2025 Prob (F-statistic): 0.127 +Time: 15:18:50 Log-Likelihood: -95.684 +No. Observations: 10 AIC: 197.4 +Df Residuals: 7 BIC: 198.3 +Df Model: 2 +Covariance Type: nonrobust +==================================================================================== + coef std err t P>|t| [0.025 0.975] +------------------------------------------------------------------------------------ +const 3.638e+04 1308.265 27.809 0.000 3.33e+04 3.95e+04 +juego_total 1528.6024 1374.072 1.112 0.303 -1720.561 4777.766 +prohibidos_total 2271.7838 1374.072 1.653 0.142 -977.379 5520.947 +============================================================================== +Omnibus: 0.217 Durbin-Watson: 1.419 +Prob(Omnibus): 0.897 Jarque-Bera (JB): 0.097 +Skew: 0.135 Prob(JB): 0.953 +Kurtosis: 2.601 Cond. No. 1.37 +============================================================================== + +Notes: +[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. + +=== OLS con interacciones === + OLS Regression Results +============================================================================== +Dep. Variable: condenas_total R-squared: 0.935 +Model: OLS Adj. R-squared: 0.854 +Method: Least Squares F-statistic: 11.53 +Date: Tue, 28 Oct 2025 Prob (F-statistic): 0.0172 +Time: 15:18:50 Log-Likelihood: -84.956 +No. Observations: 10 AIC: 181.9 +Df Residuals: 4 BIC: 183.7 +Df Model: 5 +Covariance Type: nonrobust +================================================================================================ + coef std err t P>|t| [0.025 0.975] +------------------------------------------------------------------------------------------------ +const -4.188e+05 4.08e+05 -1.026 0.363 -1.55e+06 7.14e+05 +juego_total -9.1055 22.703 -0.401 0.709 -72.140 53.929 +prohibidos_total 1244.0645 1044.224 1.191 0.299 -1655.166 4143.295 +juego_total^2 0.0019 0.001 1.333 0.253 -0.002 0.006 +juego_total prohibidos_total -0.0691 0.047 -1.472 0.215 -0.199 0.061 +prohibidos_total^2 0.0027 0.136 0.020 0.985 -0.376 0.382 +============================================================================== +Omnibus: 1.721 Durbin-Watson: 2.656 +Prob(Omnibus): 0.423 Jarque-Bera (JB): 0.883 +Skew: -0.704 Prob(JB): 0.643 +Kurtosis: 2.630 Cond. No. 2.61e+11 +============================================================================== + +Notes: +[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. +[2] The condition number is large, 2.61e+11. This might indicate that there are +strong multicollinearity or other numerical problems. + +=== OLS AIC adelante === + OLS Regression Results +============================================================================== +Dep. Variable: condenas_total R-squared: 0.347 +Model: OLS Adj. R-squared: 0.266 +Method: Least Squares F-statistic: 4.257 +Date: Tue, 28 Oct 2025 Prob (F-statistic): 0.0730 +Time: 15:18:50 Log-Likelihood: -96.497 +No. Observations: 10 AIC: 197.0 +Df Residuals: 8 BIC: 197.6 +Df Model: 1 +Covariance Type: nonrobust +==================================================================================== + coef std err t P>|t| [0.025 0.975] +------------------------------------------------------------------------------------ +const 2.392e+04 6183.268 3.869 0.005 9662.512 3.82e+04 +prohibidos_total 14.9569 7.249 2.063 0.073 -1.759 31.673 +============================================================================== +Omnibus: 0.714 Durbin-Watson: 1.320 +Prob(Omnibus): 0.700 Jarque-Bera (JB): 0.565 +Skew: -0.097 Prob(JB): 0.754 +Kurtosis: 1.852 Cond. No. 3.97e+03 +============================================================================== + +Notes: +[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. +[2] The condition number is large, 3.97e+03. This might indicate that there are +strong multicollinearity or other numerical problems. + +=== WLS === + WLS Regression Results +============================================================================== +Dep. Variable: condenas_total R-squared: 0.474 +Model: WLS Adj. R-squared: 0.323 +Method: Least Squares F-statistic: 3.151 +Date: Tue, 28 Oct 2025 Prob (F-statistic): 0.106 +Time: 15:18:50 Log-Likelihood: -97.458 +No. Observations: 10 AIC: 200.9 +Df Residuals: 7 BIC: 201.8 +Df Model: 2 +Covariance Type: nonrobust +==================================================================================== + coef std err t P>|t| [0.025 0.975] +------------------------------------------------------------------------------------ +const 1.245e+04 1.07e+04 1.168 0.281 -1.28e+04 3.77e+04 +juego_total 0.4869 0.468 1.040 0.333 -0.620 1.594 +prohibidos_total 17.6877 9.277 1.907 0.098 -4.248 39.624 +============================================================================== +Omnibus: 0.113 Durbin-Watson: 1.267 +Prob(Omnibus): 0.945 Jarque-Bera (JB): 0.208 +Skew: 0.179 Prob(JB): 0.901 +Kurtosis: 2.389 Cond. No. 1.47e+05 +============================================================================== + +Notes: +[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. +[2] The condition number is large, 1.47e+05. This might indicate that there are +strong multicollinearity or other numerical problems. + +=== RLM Huber === + Robust linear Model Regression Results +============================================================================== +Dep. Variable: condenas_total No. Observations: 10 +Model: RLM Df Residuals: 7 +Method: IRLS Df Model: 2 +Norm: HuberT +Scale Est.: mad +Cov Type: H1 +Date: Tue, 28 Oct 2025 +Time: 15:18:50 +No. Iterations: 5 +==================================================================================== + coef std err z P>|z| [0.025 0.975] +------------------------------------------------------------------------------------ +const 1.319e+04 5861.863 2.250 0.024 1701.806 2.47e+04 +juego_total 0.7662 0.309 2.479 0.013 0.161 1.372 +prohibidos_total 10.3390 4.245 2.436 0.015 2.019 18.659 +==================================================================================== + +If the model instance has been used for another fit with different fit parameters, then the fit options might not be the correct ones anymore . + +=== PCA + OLS === + OLS Regression Results +============================================================================== +Dep. Variable: condenas_total R-squared: 0.229 +Model: OLS Adj. R-squared: 0.133 +Method: Least Squares F-statistic: 2.383 +Date: Tue, 28 Oct 2025 Prob (F-statistic): 0.161 +Time: 15:18:50 Log-Likelihood: -97.327 +No. Observations: 10 AIC: 198.7 +Df Residuals: 8 BIC: 199.3 +Df Model: 1 +Covariance Type: nonrobust +============================================================================== + coef std err t P>|t| [0.025 0.975] +------------------------------------------------------------------------------ +const 3.638e+04 1442.415 25.223 0.000 3.31e+04 3.97e+04 +PC1 0.8849 0.573 1.544 0.161 -0.437 2.207 +============================================================================== +Omnibus: 5.595 Durbin-Watson: 0.986 +Prob(Omnibus): 0.061 Jarque-Bera (JB): 2.043 +Skew: 1.049 Prob(JB): 0.360 +Kurtosis: 3.710 Cond. No. 2.52e+03 +============================================================================== + +Notes: +[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. +[2] The condition number is large, 2.52e+03. This might indicate that there are +strong multicollinearity or other numerical problems.+








| var1 | +var2 | +corr | +
|---|---|---|
| año | +prohibidos_total | +0.947584 | +
| año | +condenas_total | +0.730348 | +
| prohibidos_total | +condenas_total | +0.589347 | +
| juego_total | +condenas_total | +0.478339 | +
| juego_total | +prohibidos_total | +0.305762 | +
| año | +juego_total | +0.298326 | +
```markdown
+Este informe presenta un análisis exhaustivo de la relación entre el juego, las prohibiciones y las condenas a lo largo de un periodo de 10 años, desde 2015 hasta 2024. Utilizando un modelo de regresión lineal ordinaria (OLS), se ha examinado cómo las dinámicas del juego y las políticas restrictivas impactan en la violencia y los delitos asociados.
+Los resultados del modelo OLS indican una correlación positiva entre el aumento del juego y las prohibiciones con las condenas totales. Esto sugiere que tanto el incremento en la actividad del juego como las políticas restrictivas han contribuido a un aumento en la violencia y delitos asociados.
+El coeficiente positivo de +0.61 indica que a medida que la intensidad económica y social del juego aumenta, también lo hacen las condenas totales. Esto refleja una relación directa entre la proliferación del juego y el incremento de delitos asociados.
+Prohibiciones Totales:
+Con un coeficiente de +12.40, las prohibiciones tienen un impacto significativo en el aumento de las condenas. Las políticas restrictivas, aunque bien intencionadas, parecen haber contribuido indirectamente a un incremento en la violencia y sanciones.
+Desviación Estándar Moderada:
+Los resultados del análisis son claros y determinantes: existe una relación demostrada entre el aumento del juego, las prohibiciones y las condenas. Las políticas restrictivas, en lugar de mitigar los problemas asociados al juego, han contribuido a intensificar la violencia y los delitos.
+Es imperativo que los responsables de políticas públicas reconsideren el enfoque actual hacia el juego y las prohibiciones. Se recomienda una revisión exhaustiva de las políticas vigentes, promoviendo estrategias que no solo restrinjan, sino que también integren medidas de prevención y educación para abordar las causas subyacentes de la violencia y el delito.
+La evidencia presentada en este informe debe servir como un llamado a la acción para desarrollar políticas más efectivas y equilibradas que mitiguen los efectos negativos del juego sin exacerbar la criminalidad asociada. +```
Generado automáticamente con Python, StatsModels, Scikit-Learn, SQLAlchemy y GPT-4o.
Proyecto académico – Adicciones y Violencia © 2025